

Устойчивость насыпи на глиняном основании с использованием модели SHANSEP

Автор: <u>Roozbeh Geraili Mikola, PhD, PE</u> Перевод: <u>Stanislav Vagin</u> Email: <u>hyrcan4geo@outlook.com</u> Caŭm: <u>www.geowizard.org</u>

В этом примере рассматривается анализ устойчивости насыпи на глиняном основании в *HYRCAN*. Глиняное основание моделируется с помощью критерия прочности SHANSEP. Для моделирования материала насыпи используется модель Мора-Кулона [Mohr-Coulomb].

Настройки проекта

Различные важные параметры моделирования и анализа собраны в диалоговом окне Настройки проекта [Project Settings]. Такие как Направление разрушения [Failure Direction], Единицы измерения [Units of Measurment], Методы расчета [Analysis Methods] и Свойства грунтовых вод [Groundwater property]. В данном расчете убедитесь, что Направление разрушения [Failure Direction] установлено "Справа налево" ["Right to Left"] после чего нажмите кнопку Применить [Apply]. На вкладке Методы [Methods] можно настроить параметры сходимости для метода(ов), используемых в расчете.

Выберите: Моедль [Analysis] →

Настройки проекта [Project Settings]

Project Settings		×
General	Methods	Groundwater
Units of Measurment	Failure Direct	ion
Unit: Metric	 Right to I 	eft 🗕
	🔾 Left to Ri	ight
Current Language		
Language: 🔣 English	~	
		Apply Cancel

Рисунок 1- Окно Настройки проекта [Project Settings].

Создание геометрии

• External Boundaries

 В каждой новой модели сначала нужно определить внешние границы. Чтобы добавить внешние границы, выберите Добавить внешние границы [Add External Boundary] на панели инструментов или в меню Геометрия [Geometry].

Выберите:

Геометрия \rightarrow [Geometry] \rightarrow

Внешние границы [External Boundary]

Введите следующие координаты в командной строке в правой нижней части главного окна.

Enter vertex [esc=cancel]: 25.0,10.0
Enter vertex [esc=cancel]: 95.0,10.0
Enter vertex [esc=cancel]: 95.0,40.0
Enter vertex [c=close,esc=cancel]: 70.0,40.0
Enter vertex [c=close,esc=cancel]: 50.0,30.0
Enter vertex [c=close,esc=cancel]: 25.0,30.0
Enter vertex [c=close,esc=cancel]: c

Обратите внимание, ввод "**c**" после указания последней вершины, автоматически соединяет первую и последнюю вершины (замыкает границу) и завершает команду **Добавить внешнюю границу** [Add External Boundary]. Теперь окно программы выглядит как на рисунке ниже:

Рисунок 2- Созданы внешние границы.

• Границы материалов [Material Boundaries]

 \rightarrow

Границы материалов используются в **HYRCAN** для определения границ областей разных материалов в пределах внешних границ [External Boundary]. Давайте добавим две границы материалов.

Выберите:

Геометрия [Geometry]

Границы материалов [Material Boundary]

Введите следующие координаты в командной строке в правой нижней части главного окна.

Enter vertex [esc=cancel]: 50.0,30.0 Enter vertex [d=done,esc=cancel]: 95.0,30.0 Enter vertex [d=done,esc=cancel]: d

Теперь экран программы выглядит так:

Рисунок 3- Созданы внешние границы и границы материалов.

• Задание уровня грунтовых вод

Выберите: Геометрия →

Уровень грунтовых вод [Water Table]

Введите следующие координаты в командной строке в правой нижней части главного окна.

Enter vertex [esc=cancel]: 25.0,30.0 Enter vertex [d=done,esc=cancel]: 95.0,30.0 Enter vertex [d=done,esc=cancel]: d

Теперь окно программы выглядит так:

Рисунок 4- Установлен уровень грунтовых вод.

Свойства материалов

Материал насыпи рассматривается как свободно дренирующий (т.е., песок). Недренированная прочность глиняного основания будет описана с помощью модели прочности SHANSEP. Исследование продемонстрирует, что недренированная прочность нормально консолидированных глиняных грунтов может быть представлена как константа, описываемая выражением $S_u/\sigma'_v = constant$. Недренированная прочность нормируется относительно эффективного вертикального геостатического напряжения. Для грунта, подверженного такому нагружению, уравнение, описывающее недренированную сдвиговую прочность записывается в следующем виде.

 $\tau = A + \sigma'_{\nu} S (OCR)^m$

где:

 τ = недренированная сдвиговая прочность

А = минимальная недренированная сдвиговая прочность

 σ'_{v} = эффективное вертикальное напряжение (in situ)

S = коэффициент нормальной консолидации $\left(\frac{\tau}{\sigma_{\nu}} \right)_{n}$

OCR = коэффициент переуплотнения

т = показатель степени, обычно в перделах от 0.75 до 1

Настало время задать свойства наших материалов. Выберите **Свойства материалов** [Define Materials] на панели инструментов или в меню **Материалы** [Properties].

Выберите:

Mamepuaлы [Properties]

 \rightarrow

Свойства материалов [Define Materials]

В окне Свойства материалов [Define Materials Properties] введите соответствующие параметры для каждого материала:

Материал	Условие прочности	γ (kN/m³)	c (kN/m²)	<i>ф</i> (град)	A	S	m	OCR
Embankment	Mohr-Coulomb	20	5.0	30.0	-	-	-	-
Clay Foundation	SHANSEP	19	-	-	0	0.3	0.8	2

Define Material Properties				;
Embankment	Clay Founda	tion		
Clay Foundation				
Material 3	Name:	Clay Foundation		
Material 4				
Material 5	Unit Weight (kN/m3)	: 19 🗌 Sat	t. U.W. (kN/m3): 20	
Material 6				
Material 7	Strength Type:	SHANSEP	$\sim \tau = A + \sigma_v s$	$(OCR)^m$
Material 8	Character Descent			
Material 9	Strength Paramete	ers		
Material 10	A :	0	S :	0.3
Material 11	m :	0.8	OCR ·	2
Material 12			ourt	-
Material 13				
Material 14				
Material 15	Water Parameters			
Material 16	water Parameters			
Material 17	Water Surface:	Water Table \smallsetminus	Hu: Auto	✓ 1
Material 19				
			App	v Cancel

После ввода всех параметров для каждого материала нажмите кнопку Применить [Apply].

Назначение материалов

Поскольку мы определили более одного материала, необходимо назначить свойства материала на каждую область модели используя окно **Назначить материал** [Assign Material]. Выберите **Назначить материал** [Assign Properties] на панели инструментов или в меню **Материалы** [Properties].

Выберите:

Mamepuaлы [Properties] →

Назначить материал [Assign Properties]

Появится окно Назначить материал [Assign Materials] как показано ниже.

Чтобы назначить материал нужно:

- 1. Мышкой выберите материал в окне **Назначить материал** [Assign Properties] (обратите внимание, что имена материалов такие же как Вы задали их в окне **Определить материал** [Define Material Properties])
- 2. Теперь переместите курсор в любую область грунта и нажмите левую кнопку мыши. Повторите действия для каждого материала

Рисунок 5- Геометрия модели после назначения свойств материалов.

Изменение границ склона

Границы склона автоматически высчитываются *HYRCAN* после того, как будут созданы **внешние границы** [External Boundaries]. При необходимости можно изменить границы склона с помощью окна **Определение границ** [Define Limits]

Выберите:	Поверхности [Surfaces]	→ 3a∂ar	ть грании	цы склона	[Define Slo	ope Limits]
		Define Slope Limits		×		
		Limits				
		Left x coordinate:	25	<u>1</u>		
		Right x coordinate:	50			
		Second set of limits				
		Limits				
		Left x coordinate:	70			
		Right x coordinate:	95			
			Apply	Cancel		

В этом примере левая и правая координаты заданы 25 и 50, а левая и правая координаты вторых границ заданы 70 и 95. Впоследствии, уточнением границ склона можно более точно определять минимальную поверхность скольжения. На данный момент создание модели завершено и можно приступать к запуску расчета и оценке результатов.

Расчет

Модель готова к расчету.

Выберите:

Модель [Analysis] →

Решатель перейдет к расчету. После завершения расчета можно посмотреть результаты на вкладке **Результаты** [Result Tab].

Анализ результатов расчета

Когда расчет завершится, можно посмотреть результаты на вкладке **Результаты** [Result]. При открытии вкладки **Результаты** [Result], по умолчанию отображается граница скольжения, вычисленная, по первому активированному методу расчета. В итоге получилось 5000 пробных поверхностей. Результат вычисления коэффициента устойчивости показан на рисунке 6. В Таблице 1 представлено сравнение полученных результатов расчета коэффициента устойчивости с коэффициентом устойчивости, вычисленным для подобной модели в широко известной коммерческой программе **Slide2**.

	Метод	Slide2	HYRCAN
Упрощенный Биш	Упрощенный Бишопа [Bishop Simplified]		1.456
Моргенштерн-Прайс [GLE/Morgenstern-Price]		1.382	1.379
Упрощенный Янбу [Janbu Simplified]		1.330	1.330
Спенсер [Spencer]		1.393	1.390

Таблица 1- Сравнение результатов расчета минимального коэффициента устойчивости

Рисунок 6- Результат автоматического поиска поверхности скольжения.

Чтобы увидеть все поверхности скольжения, вычисленные программой, выберите опцию **Все поверхности** [All Surfaces] на панели инструментов или в меню **Результаты** [Results].

Выберите:

Результаты [Result]

 \rightarrow

Все поверхности [All Surfaces]

Рисунок 7- Найденные круглоцилиндрические поверхности скольжения – показаны все поверхности.

Опция Показать участки [Show Slices] позволяет показать участки, использованные в расчете.

берите:	Результа [Result]	^{ты} → Д Показать участ	ики [Show Slices]
HVRCAN 1.90 - Junnamed File View Geometry Lu D D D D D D D D D D D D D D D D D D D	model) sading Support Surfaces Properties Analysis 좋좋 좋 속 그 다 한 11 정 것	‱ Hφ ※ > 10 C C C C > > 2 X ■ 2 C € C C	- 0
E Model	Bealt		
HYRCA ©2021 Roozbeh (Factor of Safety J	N 1.90 ieraili Mikola nfo.	Berba X Berli CC 22	
Method: Bishop Sim Min. FOS: 1.45596 Center: 51.3791,51. Radius: 22.7187 Left Surface Endpo Right Surface Endpo	pšfied 207 nt 43.75,50 šet: 71.0417,40	Dut Tree Value 28 (Ne Norder 13 Pactor of Safay 1.5296 Ban Friedrick Adapt (fligg) 0 Ban Caberico (SPI) 40,729 Gan Viet (Norder) 1.5300	
	a ⁻	Box Length (m) 1.1682 Angel 475 Science (length) 1.5422 Scie Weight 2014/ml) 9.5609 Pare Pressure (PA) 5.3005 Box Boar Force (M) 2.5895 Box Boar Force (M) 2.6305 Box Boar Force (M) 2.6305	
	8	Left Sak Normal Force (NO) 99.1054 Ingel Stek Normal Force (NO) 97.0279 Left Sak Steer Force (NA) 0 R. Trom Canol	-
	8- 		n in
Lemmand Line HRCAN>> asignofinat("not" HRCAN>> definiting ("not", HRCAN>> definiting ("not", HRCAN>> effective ("Herhord", "Bah HRCAN>> encret() HRCAN>> bio("disar faces") HRCAN>> bio("disar faces") HRCAN>> bio("disar faces")	f1,2,*alpant1,50,20 3,50, Ams21,70,50 g6m*,*on*,*Method*,*0.2,M+P*,*on*,*Method*,*3adou6m	Sar, "Helman", Spenner (Sar)	

Рисунок 8- Отображение участков

Скрипт

После завершения создания модели будет доступен для сохранения в текстовый файл, сгенерированный *HYRCAN* скрипт.

Ниже приведены команды для данного примера.

newmodel()

set("failureDir","r21")

set("unit","metric","waterUW",9.81)

extboundary (25, 10, 95, 10, 95, 40, 70, 40, 50, 30, 25, 30, 25, 10)

matboundary(50,30,95,30)

addwatertable(25,30,95,30)

definemat("ground","matID",1,"matName","Embankment","cohesion",5)
definemat("ground","matID",2,"strengthType","SHANSEP","matName","Clay
Foundation","uw",19,"shansep_s",0.3,"shansep_ocr",2)

assignsoilmat("matid",2,"atpoint",50,20)

definelimits("limit",25,50,"limit2",70,95)

set("Method","BishopSim","on","Method","GLE/M-P","on","Method","JanbuSim","on","Method","Spencer","on")

compute()